

NovaFlex has been pioneering innovative ways to make ducting more versatile, dependable and competitively priced for over 25 years.

Our patented manufacturing technique, utilizing "mechanical lock construction", allows us to produce specialized products not available from other sources. This process combines unmatched product integrity and durability with the flexibility to quickly meet custom orders, large or small.

Unlike conventional methods using adhesives, our process requires no curing and is more resistant to temperature and environmental extremes. The outside metal helix also contributes to duct strength, durability and scuff-resistance.

Coupled with our complete line of extruded thermoplastic ducts, NovaFlex offers the widest selection of individual products in the industry.

All hose and duct manufactured by NovaFlex are warranted to be free from all defects in material and workmanship. It is impossible to test NovaFlex hose and duct under all conditions to which they might be subjected in the field. It is therefore the buyer and/ or end users' responsibility to test all NovaFlex hose and duct under conditions that duplicate the service conditions prior to installation.

Shipping Terms: F.O.B. Our warehouses

Due to continuous improvements, all specifications are subject to change without notice.

GENERAL SERVICE DUCTS

Novaflex general service ducts are extremely lightweight, flexible and economical.

U-LOK 100 An extremely flexible duct with

good low temperature resistance and chemical resistance. Manufactured with UL 94, V-0 approved materials. **Applications:** Dust control Air handling Light material handling Fume control **Construction:** Material: Polyester fabric. Neoprene coated Construction: Mechanical bond, corrosion resistant helix Diameters: 2" to 24" Bend radius: =1.5 x I.D. Weight: 6" I.D. =.9 lbs/ft. Standard length: 25 ft Compression Ratio: 6:1. Temperature Range: -45° to +250°F Colour: Black I.D. 2 3 4 5 10 12 8 Working 3.6 3.2 2.7 2.6 1.8 1.4 1.2 Pressure/PSI Negative 2 1.8 1.3 1.2 1.1 0.73 0.6 Pressure Inch. H.g

U-LOK 101

A combination of high-quality material and economical price provide an excellent flexible duct. PVC coated duct provides an alternative for wet fumes.

Applications Dust control Air movement General Service Fume control

Construction

Material: Fiberglass/PVC coated Construction: mechanical bond, corrosion resistant helix Diameters: 2" to 24". Larger sizes available Bend radius = 1.5 x l.D Weight: 6" l.D. =.9 lbs/ft Length: 25ft Compression Ratio: 6:1 Temperature range: -20°F to +250°F Colour: Black

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI		4.3	4	3.6	3.5	3	2.15	1.8
Negative Pressure Inch. H.g		3.2	2.7	2.4	2.2	1.8	1.6	1.25

UTILITY FOOD GRADE

Designed for air and dust control light material handling & fume control applications

AF-1

With a bonded construction and encapsulated wire this duct is non-marking lightweight and economical. Manufactured with UL 94, V-0 approved materials.

Applications

Air handling Fume control Dust collection Cool air supply

Construction:

Material: Polyester fabric, Neoprene coated Construction: Single ply fabric over fully encapsulated spring steel helix Diameters: 1.5" to 36". Weight: 6" I.D. = .84 lbs/ft. Length: 25 ft. Compression Ratio: 5:1. Temperature Range: -40° to +250°F Colour: Black

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	20	14	13	9	7	7	5	3
Negative Pressure Inch. H.g	11.7	11.3	10.5	6	4	2.5	1.75	1.25

SF-EVA

All extruded construction in ultra light weight translucent EVA for visual flow monitoring. This product offers good puncture resistance and is ideal for insulation blowing, cable conduit and fume control applications. Good chemical resistance.

Applications

Fume control Light duty material handling Cable conduit Insulation blowing

Construction

Material: Ethyl Vinyl Acetate, extruded construction Diameters: 2" to 4" Bend Radius: 2"= 3.75" Weight: 3" diam.= .4lbs/ft Lengths: 25 ft & 50 ft Temperature range -65°F to +200°F Colour: clear with white external scuff strip

I.D.	2	3	4
Working Pressure/PSI	8	7	6

Flexible ducting for food, pharmaceutical material transfer and clean room applications.

SF-TPU (Wall Gauge 0.030")

All extruded, molecularly bonded urethane duct with encapsulated wire offers Maximum abrasion resistance and superior tear resistance. Smooth inner wall reduces turbulence for maximum flow efficiency. Encapsulated wire protects surfaces from scuffing. Manufactured with FDA approved materials.

Applications

Sawdust collection Lavatory waste Pellet, material transfer Excellent low temperature flexibility Abrasion, oil and ozone and fungus resistant

Construction:

Material: 0.030" clear extruded urethane Diameters: 1.5" to 24" Weight: 6" I.D.= 0.84 lbs/ft Lengths: 25 & 50 ft. to 8" diam., 25'-10" diam. and up Compression Ratio: 2:1 Temperature range:-65°F to +200°F Colour: Clear with clear helix *(available with and without encapsulated wire)

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	22	20	18	18	16	16	14	14
Negative Pressure Inch. H.g	29	29	26	21	16	6	5	4.5

MEDIUM SERVICE DUCTS

Medium weight flexible ducting products to provide additional service life. Suitable for light duty material handling, plant cleanup, fume control and

U-LOK 200

Heavier gauge fabric and coating to provide longer service life. Neoprene coating provides good cold temperature resistance compared with PVC. Manufactured with UL 94, V-0 approved materials.

Applications

Heavy-duty dust control Outdoor plant clean-up Sawdust, Hot Air blower

Construction

Material: polyester/neoprene Construction: mechanical bond, corrosion resistant helix Diameters: 3" to 24" I.D. larger sizes available Bend radius = $1.5 \times I.D$ Weight: 6" I.D. = 1.1 lbs/ftLength: 25ft Compression ratio 6:1 Temperature range: -65°F to $+250^{\circ}\text{F}$ Colour: Black

I.D.	3	4	5	6	8	10	12
Working Pressure/PSI	4.3	4	3.6	3.5	3	2.15	1.8
Negative Pressure Inch. H.a	3.2	2.7	2.4	2.2	1.8	1.6	1.25

SF-TPR (Thermo Plastic Rubber)

Molecularly bonded high temperature thermoplastic rubber. Exceeds temperature limit of most plastics and is an economical alternative to specialty fabric duct. SF-TPR provides outstanding performance and flex fatigue resistance. Smooth interior design allows for superior flow and maximum efficiency. Extremely flexible with excellent shape retention. *See SF-TPR_FR for flame retardant applications

Applications Excellent flex fatigue resistance Light duty material handling Hot exhaust extraction Medium duty chemical fume removal

Construction

Material: Thermoplastic Rubber with molecularly bonded wear strip Diameters: 1.5" to 24" Bend Radius: 6" = 6.5" Weight: 6" I.D.= .77 lbs/ft Lengths: 25 & 50 ft. up to 8" diam., 25' - 10" diam. and up Compression Ratio: 2:1 Temperature range:-40°F to +275°F continuous, (+300°F intermittent) Colour: Black with yellow wear strip.* *(available with and without encapsulated wire)

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	8.5	7.5	7.3	7.2	7	6.7	5.5	4.7
Negative Pressure Inch. H.g	26	24	20	16	12	5	4.5	4.0

SF-PVC (Thermo Plastic PVC)

This duct's special molecularly bonded construction means less turbulence for maximum flow efficiency. This is a choice duct for many industrial applications, including the transport of particles and gaseous media. Constructed of premium clear Polyvinyl Chloride this duct allows for continuous visual monitoring. Manufactured with FDA approved materials.

Applications

Suitable for light duty material handling Good resistance to oil, alkali and acids Extremely flexible with good abrasion resistance Clear construction for visual monitoring

Construction

Material: Thermoplastic Polyvinyl Chloride. Wire encapsulated PVC external helix wear strip Diameters: 1.5" to 24" Bend radius = 6'' diam. = 5.5''Weight: 6" = .88 lbs/ft Lengths: 25 & 50 ft. up to 8" diam., 25' - 10" diam. and up Compression Ratio: 2:1 Temperature range: -20° F to $+165^{\circ}$ F Colour: Clear with black external helix I.D. 2 3 4 5 6 8 10 12 Working

Pressure/PSI	18	14	13.3	12.6	12	10.7	7	6.3
Negative Pressure Inch. H.g	28	24	24	19	14	5	5	4

AF-2

Double ply bonded construction provides enhanced positive pressure performance and durability; Bi-directional construction for maximum flow efficiency. Manufactured with UL 94, V-0 approved materials.

Applications

Particle control Pellet and chip handling Areas of high vibration Large volume fume control **Construction:** Material: Polyester fabric, Neoprene coated Construction: Two ply fabric over fully encapsulated spring steel wire. Diameters: 1.5" to 36". Weight: 6" I.D. =.9 lbs/ft. Length: 25 ft Compression Ratio: 2:1. Temperature Range: -40° to +250°F Colour: Black

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	33	23	18	14	14	11	10	8
Negative Pressure Inch. H.g	28	27	25	18	14	8	5	3

air transfer applications.

AF-2WS

Double ply bonded construction coupled with a scuff guard for additional external abrasion resistance. Manufactured with UL 94, V-0 approved materials.

Applications Particle control Pellet and chip handling Areas of high vibration Large volume fume control

Construction:

Material: Polyester/Neoprene coated. Black with yellow or black bonded wear strip. Construction: Two ply fabric over fully encapsulated spring steel wire helix. Diameters: 1.5" to 36" Weight: 6" I.D. =1.02 lbs/ft. Length: 25 ft Compression Ratio: 1.5:1 Temperature Range: -40° to +250°F Colour: Black with yellow wear strip

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	33	23	18	14	14	11	10	8
Negative Pressure Inch. H.g	28	27	25	18	14	8	5	3

SPECIALTY METAL TUBING / HIGH TEMP FUME CONTROL

Novaflex patented triple lock construction provides for an air tight seam and added strength.

Metal Flex is ideal for stationary applications where bends are required or need to be maintained.

Easy to bend into position and ultra lightweight.

T-Lok 3003

An economical single ply aluminium duct. Also available in two plies for added strength or higher negative pressures.

Applications: Ideal for stationary bends Elbow replacement for low pressure Air movement Fume control Heating, cooling Dehumidifying

Construction:

Material: Aluminum Construction: Triple mechanical lock Diameters: 2" to 24". (Larger sizes available on request) Length: 10 ft Bend radius = 1.5 x I.D. Weight: 6" I.D. =1.02 lbs/ft. (2 ply) Compression: 3:1 Temperature Range: -60° to +600°F (also available in 2ply for extra strength or higher negative pressure)

Rated Velocity: 4000 f/m (20.3 m/s) Positive Pressure: 12" w.g. (3.0 kPa) Negative Pressure: 1" w.g. (0.25 kPa) ULC Listing: CLASS 1 AIR DUCT/CONNECTOR

T-Lok 304, TLok 316, TLok 316Ti

An economical stainles steel tubing designed to handle a broad range of industrial uses. Available in three stainless steel grades to handle various application requirements.

Applications:

Elevated temperature Fume control Drying Air filter intake Elbow replacement for low pressure **Construction:** Material: Stainless steel with 316Ti alloy, .005" Construction: Triple mechanical lock

Construction: Triple mechanical lock Diameters: 2" to 24". (Larger sizes available on request) Bend radius = $1.5 \times 1.D$. Weight: 6" 1.D. = .750 lbs/ft. Length: 10 ft Temperature Range: -60° to +1700°F

Rated Velocity: 4000 f/m (20.3 m/s) Positive Pressure: 12" w.g. (3.0 kPa) Negative Pressure: 1" w.g. (0.25 kPa) ULC Listing: CLASS 1 AIR DUCT/CONNECTOR

HEAVY DUTY SERVICE DUCTING

Novaflex heavy duty service products are designed to handle the more NovaFlex offers a wide range of Thermoplastic rubber and urethane

For higher pressure applications refer to Extruded Material Handling Hose section - page 12

U-Lok 1010 & U-Lok 1020

A clear duct designed for flexibility with excellent abrasion resistance. Clear wall for flow monitoring. External metallic helix for scuff resistance. Available in two gauges manufactured with12 mil and 20 mil.

Applications

Extremely flexible Ideal for use with articulating equipment Compressible, saw dust control In plant clean up (FDA approved material)

Construction:

Material: Urethane, 12 mil, clear. (style U-Lok 1010) or 20 mil, clear (style 1020) Construction: Mechanical lock, corrosion resistant helix Diameters: 3" to 24". Bend radius: =1.5 x I.D. Weight: 6" I.D. =.7 lbs/ft. (U-Lok 1010) Weight: 6" I.D. =1.25 lbs/ft (U-Lok 1020) Length: 25 ft. Compression Ratio: 4:1 Temperature Range: -20° to +250°F Colour: Clear

I.D.	3	4	5	6	8	10	12
Working Pressure/PSI	4.3	4	3.6	3.5	3	2.2	1.8
Negative Pressure Inch. H.a.	3.2	2.7	2.4	2.2	1.8	1.6	1.25

U-Lok 1030 (30 mil Urethane Duct)

This extra heavy duty service duct will stand up to the toughest jobs. Constructed of 30 mil urethane, with an extra wide helix for added scuff resistance and strength. Great flexibility.

Applications

Heavy duty abrasion resistance Leaf collection Material handling, woodworking High flexibility, Oil resistant U.V. stabilized Meets FDA requirements 177.2600

Construction

Material: Urethane, 30 mil, mechanical lock corrosion resistant helix Diameters: 4" to 14". Weight: 6" I.D. = 1.9 lbs/ft Colour: Black Compression Ratio: 4:1. Length 25 ft Temperature Range: -20° to +250°F

I.D.	4	5	6	8	10	12
Working Pressure/PSI	18	18	16	16	14	14
Negative Pressure Inch. H.g	26	21	16	6	5	4.5

ters: 1.5" to 24" :: 6" I.D. = 0.84 lbs/ft s: 25 & 50 ft. to 8" diam., 25'-10" diam. and up ression Ratio: 2:1 rature range:-65°F to +200°F :: Clear with clear helix able with and without encapsulated wire) 2 3 4 5 6 8 10 12 J J PSI 22 20 18 18 16 16 14 14	
t: 6" I.D.= 0.84 lbs/ft s: 25 & 50 ft. to 8" diam., 25'-10" diam. and up ression Ratio: 2:1 rature range:-65°F to +200°F : Clear with clear helix able with and without encapsulated wire)	
t: 6" I.D.= 0.84 lbs/ft s: 25 & 50 ft. to 8" diam., 25'-10" diam. and up ression Ratio: 2:1 rature range:-65°F to +200°F r: Clear with clear helix	
ruction: al: 0.030" clear extruded urethane	15
TPU (Wall Gauge 0.030") ruded, molecurlary bonded urethane duct with sulated wire offers Maximum abrasion resistance perior tear resistance. Molecularly bonded uction reduces turbulence for maximum flow ncy. Encapsulated wire protects surfaces from g. Manufactured with FDA approved materials. sations ry waste material transfer nt low temperature flexibility chemical resistance, temperatures oil and ozone and fungu	

SF LFC – Leaf Collector (SF-TPUHW-B Heavy Gauge 0.045")

An economical alternative to cumbersome rubber hose. Polyurethane wall for superior abrasion resistance. UV stabilized for outdoor use. Lightweight, good flexibility, smooth interior for optimum flow with encapsulated wire.

Applications

Leaf collection equipment Medium duty material handling Plant debris collection

Construction

Material: 0.045" translucent blue urethane, encapsulated wire Diameters: 2" to 16" Weight: 6"= 1.4 lbs/ft, 8"= 1.9 lbs/ft Lengths: 25 ft & 50 ft to 8", 25' to 10" diam. and up Compression Ratio: 2:1 Temperature range: -65° to +200°F Colour: Blue with blue wear strip *Available in 0.060" gauge clear 8" to 14" diam.

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	35	30	21	18	16	14	10	8
Negative Pressure Inch. H.g	30	30	30	26	23	13	6	5

rugged service conditions of abrasive material handling. products for heavy duty service

SF -TPR -DC (Duct Cleaning)

Crush resistant duct with excellent shape retention. Extremely flexible and compressible. Enhanced chemical resistance of TPR with an extremely smooth interior for superior flow. Heavy duty external wear strip protects against abrasion but will not scuff or mark surfaces. No wire.

Applications:

Industrial and residential duct cleaning. In-plant dust control; shop vacuum systems. Chemical fume control.

Construction:

Material: 0.045" extruded thermo plastic rubber Diameters: 3" to 10" Temperature range: -60°F to +250°F. Weight: 1.8 lbs - 8" diam. Lengths: 25 & 50 ft. up to 8", 10"-25 ft. Compression Ratio: 2:1 Colour: Black with black external wear strip. Temperature range: -60°F to +250°F.

I.D.	3	4	5	6	8	10
Working Pressure/PSI	7.5	7.3	7.2	7	6.7	5.5
Negative Pressure Inch. H.a	24	20	16	12	5	4.5

Novaflex AP60 (All Purpose)

An extremely flexible and compressible all around heavy duty duct. With enhanced chemical and temperature resistance of TPR, with an extremely smooth interior for superior flow. A heavy duty external wire encapsulated wear strip protects against abrasion - but will not scuff or mark surfaces.

Applications

Industrial cleaning, In-plant dust control, Shop vacuum systems, Chemical fume control.

Construction:

Material: 0.060" extruded thermo plastic rubber Diameters: 2" to 12" Weight: 1.1 lbs/ft - 6" diam. Lengths: 25 ft & 50 ft to 8" diam., 25' - 10" diam. and up Compression Ratio: 2:1 Temperature range: -60°F to +225°F Colour: Black, with black external wear strip.

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	8.5	7.5	7.3	7.2	7	6.7	5.5	4.7
Negative Pressure Inch. H.g	26	24	20	16	12	5	4.5	4

ULTRA HIGH TEMPERATURE SERVICE

High temperature service ducting up to 1800° F provide flexible alternatives Designed to be used in fume extraction systems where a negative pressure

U-Lock A highly flexible reinforced (E-G chemically trea higher temperot Applications High temperatu Scuff resistant Flame resistant Flame resistant *Air Velocity shc *Not recommen Construction: N dalso available = Diameters: 3" th Weight: 6" I.D. Length: 25 ft. Compression Ra Temperature ra *Not recommen Colour: Metallia	e ducc e ducc ilass d ted a tre fur re fur ould b ded f na cc d with Necha stainli- lecha e 1.0 atio: : nge - nded c Gre	t mac ceran nd cc fume me re e less for die ated, a fin nical ess str 1.D. 1 lbs,/ 3"-4" 200°F for di	le of nic cla vated. recover than sel fu textile e V4A bond eel he cover textile and eel he cover textile bond eel he cover textile sel fu textile to +textile sel fu textile to +textile tex	50 m, me ap solution and solution and soluti	at is for /sec. opplicat s, anizec s avai	l steel lable. ermitte	nt.	U-Lok A more robust, Two plies high ti offers a longer: Applications Hot air extractio Heat shield or co Furnace constru- Iron and steel w 'air velocity shou Construction: M (also available s Diameters: 4" to Weight: 6" I.D. Length: 25 ft. Compression Ro Temperature rar Colour: Grey	n omp orks uld b na cc fine V echo stainl o 24' = 2.0	ply hi eratu ce life ensate be less bated, V4A w inical less st ' I.D.)1 lbs, 4:1	gh ter re res e. or s than vire. bond eel he Large /ft.	50m/ e glas , galva er size	coate sec s fabr anizec s avai	ic d steel lable.	helix	
I.D.	3	4	5	6	8	10	12	I.D.	3	4	5	6	8	10	12	2
Working Pressure/PSI	6.8	3.7	3	2.3	1.4	1	.75	Working Pressure/PSI	7	3.7	3	2.3	1.4	1	.75	
Negative Pressure Inch. H.g	4.5	2.1	1.6	1.2	.7	.45	3	Negative Pressure Inch. H.a	4.5	2.1	1.6	1.2	.7	.45	3	

GARAGE EXHAUST - INDOOR FUME CONTROL

Silicone - Hot air and vehicular Exhaust Extraction duct economical high Novaflex offers a wide range of silicone coated ducting for stationary to

U-Lok 401/U-Lok 420

The combination of standard external helix as a scuff guard and a non-glue construction results in the industry standard high-temperature duct.

Applications

Automobile exhaust hose reel Gas exhaust control Hot fume control Hot air supply and removal *not recommended for diesel applications

Construction:

Material: Fiberglass/Silicone U-Lok 420 with additional silicone coating Construction: Mechanical bond, corrosion resistant helix. Diameters:: 2" to 24" I.D. Bend radius: = 1.5''x I.D. Weight: 6" I.D. = 1.1 lbs/ft. Length: 25 ft. Compression Ratio: 5:1 Temperature range: -65°F to +500°F intermittent. *Also available with stainless steel helix Colour: Metallic Grey

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	8	6.8	3.7	3	2.3	1.4	1	.75
Negative Pressure Inch. H.a	7	4.5	2.1	1.6	1.2	.7	.45	.3

exhaust extraction and high temperature air transfer. Ultra flexible mechanical lock construction provides superior tear and tensile strength and eliminates wire movements found in traditional single-ply duct. Air tight construction. Uniform flexibility and compressibility reduces exhaust turbulence and pressure loss. Annlientiene

Colour: Orar	2	3	4	5	6	8	10	12
Colour: Orar			_	-	-	-		
Construction Material: Med Construction: Diameters: 2 Weight: 6" I.I Length: 25ft Compression Temperature	dium go Mecho " to 12' D. = 1. Ratio: range:	anical " 11bs/f 5:1 -60°F	lock, e t to +5	extern	al stee	el scuf	f guar	ď
Garage fume Combustion I								
	reels	1- 1-	ny une	l rem	ovai			

Negative Pressure Inch. H.g. 7 4.5 2.1 1.6 1.2 .7 .45	.3
--	----

for ultra high temperature applications. fan can be incorporated downstream from the heat and fume source.

Negative Pressure Inch. H.g 2.1	1.6	1	.2	.7	.45	.3
Working Pressure/PSI 3.7	3	2	.3	1.4	1	.75
I.D. 4	5		6	8	10	12
U-Lok 20 his flexible three p s designed for ultro ply with ceramic the ply with ceramic the plane testing vehicle digh temperature fut deat shield or comp furnace construction for and steel works by the construction construction: Acterial: Alumina construction: Mecho Diameters: 4" to 24 Veight: 6" 1.D. = 2.2 ength: 25 ft. Compression Ratio: emperature range: W Colour: Metallic Gree	ly cer a high textile ms wh ted le mai ume r pensa be les: coate aanica 4" I.D. 2 Ibs/ 2 Ibs/ : 3:1	ramii h ter e fille nere inter ecov tor s thc d, te cloth l bo /ft. g ten	ic V. mpe er. a n nanc very an 5 extile fille nd,	ratur egati e, inc 0m/s e glas er. steel ature:	e resi ve pre door e sec s fabr helix. :-200°	stance ssure nviror ic reir

temperature exhaust ducting for lower velocity applications up to 500°F constant flexing applications in single and double ply styles.

Silicone Nomex[®] Duct For use with hose reels

2 ply silicone nomex exhaust extraction duct offers the added strength and durability required to sustain constant flexing or use on hose reels.

Applications

High temperature air movement exhaust hose reels Garage fume control involving constant flexing **Construction** Material: 1 ply silicone coated fibreglass, 1 ply Nomex Construction: molecular, bonded wire encapsulated Diameters: 2" to 24" I.D. Weight: 6" ID = .9 lbs/ft

Lengths: 12 to 24 ft., longer lengths available Compression Ratio: 2:1 Temperature range:-60°F to +500°F (+600°F intermittent) Note: all silicone ducts are available with 1 or 2 ply with

Note: all silicone ducts are available with 1 or 2 ply with or without external wearstrip. Style No 93MBSNX202.00OX Colour: Orange/Red *Nomex is a registered trademark of the E.I. DuPont Company

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	50	45	40	35	30	15	8	4
Negative Pressure Inch. H.g	20	14	10	8	6	6	4	4

MEDIUM DUTY FUME CONTROL

Ultra flexible lightweight ducts designed specifically for industrial chemical fume control applications

U-Lok 50 This nylon polyamic resistance at an affi gas permeability ra containing noxious Applications: Chemical fume cont Clean room Visual monitor, sigh Painting Laboratory Construction Material: Nylon/Poly Construction: Mech Diameter: 3" to 24" Weight: 6" I.D. = .8 Length: 25ft Compression Ratio: Temperature Range: Colour: Clear	d duct ordab ting th odors trol t gaug vamid anical I.D. L i lbs/ft 6:1	e pric is pro and g e (clear bond, arger	e. Wi oduct i gases. , corrc sizes i	ith an is ide osion availc	excell al for resista	lent	ix	U-Lok Manufactured around fume Availlable in ' gauge wall fo Applications Clean rooms Fume conrol Chemical dust Also suitable fi Construction: Diameters: 3" Bend Radius = Weight: 6"I.D. Length: 25ft Temperature R Compression	with contro 2 mil r add r addd r add r add r add r add r add r add r add r add r add	clear ol duc l light ed str ol n duty chloria anical ' I.D. X I.D. 5 lbs/ : - 20°	dust dust dust de, 12 bond Large	C film ntweig e and contro mil c , corr	n. An ht an 20 n 20 n or 20 n osion s avai	nil resiste	all nomical. dium		White and the second se
I.D. 2	3	4	5	6	8	10	12	I.D.	3	4	5	6	8	10	12		
Working Pressure/PSI 5	4.3	4	3.6	3.5	3	2.2	1.8	Working Pressure/PSI	3.6 3.9	3.2 3.6	2.7 3	2.6 2.7	1.8 2.2			-	
Negative			2.4					Negative	2	1.8	1.3	1.2	1.1	.7	.6 UL60	10	

SPECIALTY FUME CONTROL

For superior fume control service Novaflex offers a range of ultra high Even the most noxious fumes can be contained to meet today's stringent health

U-Lok 1100

An extremely versatile combination of fiberglass and PTFE. Ultra flexible for tight bends.

Applications

Highly corrosive fumes Hot exhaust

High temperature where silicone is not pemitted

resists over 3,000 chemicals Diesel exhaust extraction where temperature permits. *not suitable for wet fumes

Construction

Material: Fiberglass/PTFE coated Construction: Mechanical bond, corrosion resistant helix Diameters: 3" to 24" I.D. Larger sizes available Bend Radius = 1.5 X I.D. Weight: 6" I.D. = .9 lbs/ft Length: 25ft Compression Ratio: 4:1 Temperature Range: -65°F to +500°F Colour: Grey

I.D.	3	4	5	6	8	10	12
Working Pressure/PSI	5	3.75	3	2.3	1.4	1	.75
Negative Pressure Inch. H.g	3.2	2	1.5	1	.75	.4	.25

U-Lok 1105

This duct is chemical resistant and food grade quality. It is clear for visual monitoring and offers the high performance of Teflon®.

Applications

Severe duty fume control High temperature fume control Ideal for wet fumes Chemical pharmaceutical pellets and dust FDA Rated Material

Construction

Material: Ultra high performance Teflon® PFA film Construction: Mechanical bond, stainless steel helix Diameters: 3" to 24" I.D. I.D. Larger sizes available Bend Radius = 1.5 X I.D. Weight: 6" I.D. = 1.09 lbs/ft Length: 25ft Compression Ratio: 6:1 Temperature Range:-65°F to 500°F ® Teflon is a registered trademark of DuPont. Colour: Clear to translucent

I.D.	3	4	5	6	8	10	12
Working Pressure/PSI	7	4	3.6	3.5	3	2.2	1.8
Negative Pressure Inch. H.g	3.2	2.7	2.4	2.2	1.8	1.6	1.25

U-Lok With the added is an all aroun Available in lig 621 style for a	d poly d fun ht go	/ester ne and iuge 6	reinfo d dust 501 st	orcem contr	ent U ol du	Lok 6	501 PV	
Applications: Acid fumes Exhaust hoods Light material h Construction in corrosion resist Diameters: 3" 1 Bend Radius: Weight: 6" I.D. Length: 25 ft Compression R Temperature R Colour: Black	nandl - U-I ster/F nechc ant h o 24' = 1.5 = .8 atio:	ing Lok 6 VC co anical elix 7 I.D. X I.D. 5 lbs/ 6:1	01: bated, bond, Large ft	er sizes	s avai	lable		
I.D.	3	4	5	6	8	10	12	
Working Pressure/PSI	3.6	3.2	2.7	2.6	1.8	1.4	1.2	
Negative Pressure Inch. H.g	2	1.8	1.3	1.2		.73	.6	

performance materials. and environmental requirements.

U-Lok 1110

An extremely flexible duct designed specifially to handle today's extremely noxious fumes including fluorine. Ideal for both wet fumes and dry fumes.

Applications

Good abrasion resistance for exhaust with particulate Good tear and puncture resistance Excellent cold temperature resistance Diesel exhaust extraction where temperature permits Extreme chemical resistance

Construction

Material: 100% PTFE Teflon® Construction: Double ply bonded film Mechanical lock, external metal helix Diameters: 4" to 24" I.D. larger sizes available Bend radius: 1.5 x I.D. Weight: 6" I.D. = .9 lbs/ft Length: 25 ft Compression: 4:1 Temperature Range: -200°F to +400°F. Continuous +500°F (intermittent) ® Teflon is a registered trademark of DuPont. Colour: Blue

I.D.	4	5	6	8	10	12
Working Pressure/PSI	4	3	2.3	1.4	1	.75
Negative Pressure Inch. H.g	2.1	1.6	1.2	.6	.4	.3

Exhaust System Accessories

The life of all fabric ducts can be greatly extended when sized correctly according to equipment exhaust requirements. Novaflex offers a complete line of fittings and accessories for use in exhaust systems. Where exhaust fume leakage is of concern a negative pressure fan system should be incorporated. Please consult a Novaflex factory salesperson for correct sizing for diesel, caustic or high velocity exhaust applications. This will also aid in reducing exhaust temperatures and static pressures.

GEAR CLAMPS Stainless steel, 9/16" wide band, available in sizes 3" to 24". **BRIDGE CLAMPS** For superior sealing. Stainless steel, 9/16" wide band,

available in sizes 3" to 24".

COUPLINGS - DUCT MENDER Available in stainless steel or galvanized.

FUME HOOD For venting fumes, smoke and noxious odors.

DOUBLE WALL FITTINGS To provide a secure end connection on insulated products.

ELBOWS Used in bends to mitigated premature duct wear. REDUCERS INCREASERS

Used to accommodate varying duct and fitting diameters

WELDING EXHAUST / UTILITY BLOWER DUCT

Welding Exhaust ducting, designed specifically for improved indoor air quality. Utility Blower Duct is designed to carry large volumes of warm or cold air in indoor or outdoor environments.

U-Lok 4700

Welding exhaust high temperature fume extraction. This 2-ply heavy duty duct provides high temperature service and extra durability.

Applications

High temperature exhaust in hot environments Ideal for removal of welding fumes Very flexible, ideal for difficult installs Outer aluminized fiberglass deflects heat *not recommended for contact with sparks or slag

Construction

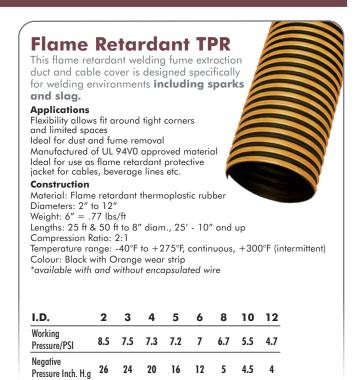
Material: Inner skin: Silicone coated fiberglass Outer skin: Tri-laminate fiberglass coated with Aluminized polyester/polyamid Available w/stainless steel helix Construction: Mechanical bond, corrosion resistant helix. Diameters: 4" to 24" I.D. Bend Radius = 1.5 X I.D. Weight: 6" I.D. = 1.34 lbs/ft Length: 25ft Compression Ratio: 4:1 Temperature Range: -20°F to +600°F Colour: Metallic Silver

I.D.	2	3	4	5	6	8	10	12
Working Pressure/PSI	-	4.3	4	3.6	3.5	3	2.15	1.8
Negative Pressure Inch. H.g	-	3.2	2.7	2.4	2.2	1.8	1.6	1.25

Vinyl Blower Duct (Fabric Reinforced)

Fabric reinforced vinyl coated blower duct, ideal for fresh air supply. Manufactured with a molecularly bonded wearstrip for scuff resistance. An economical duct for large volume air transfer. This duct is reinforced with a spring steel helix and covered with a urethane wear strip.

Applications Scuff resistant


Economical

Compressible and flexible

Construction

Material: Polyester single fabric coated with vinyl Construction: Single ply fabric over fully encapsulated spring steel helix with urethane wearstrip Diameters: 6" to 24" 1.D. Larger sizes available Bend Radius = 12" diam.= 7" Weight: 6" I.D. = .7 lbs/ft Length 25ft Compression Ratio: 10:1 Temperature Range: -20°F to +180°F Colour: Yellow with Black scuff guard

I.D.	8	10	12	14	16	18	20	22	24
Working Pressure/PSI	6	5	5	4	4	3	2	2	1
Negative Pressure Inch. H.g	6	6	3	3	1	1	1	1	1

Clear Extruded PVC Blower Duct

All extruded PVC Blower duct provides an economical alternative to fabric reinforced blower duct. With a 0.045" gauge wall with spring steel wire, this product is as robust as they come. Rot and mildew resistant. Clear wall is unobtrusive. Excellent for inflatable amusements, tents, etc. *Also available in regular thermoplastic rubber (TPR and Flame Retardant TPR) for higher temperature applications.

Flame Retardant IPR) for higher temperatu **Applications** A/C Ventilation, Blower hose Function Tent HVAC, Fans

Construction

 Construction

 Material: Extruded PVC - Clear

 Cover: Extruded molecularly boned thermo plastic wearstrip

 Reinforcement: Spring steel helix

 Diameters: 8" to 24"

 Bend Radius = 12" diam. = 7"

 Weight: 24" I.D. = 3 lbs/ft

 Length: 25 ft

 Compression: 10:1

 Temperature range: -20°F to 165°F – PVC style *-40°F to 275°F TPR-FR style

 Colour: Clear with Black scuff strip

I.D.	8	10	12	14	16	18	20	22	24
Working Pressure/PSI	10	7	6.3	5	5	4	4	3	2
Negative Pressure Inch. H.g	5	5	4	3	3	1	1	1	1

TEMPERATURE LOSS PROTECTION

Versatile insulated flexible ducting for temperature loss protection. Combine any NovaFlex ducting to meet specific application needs

Working Pressure/PSI	4.3	4	3.6	3.5	3	2.15	1.8		
I.D.	3	4	5	6	8	10	12		
Construction: T Diameters: 2" Bend Radius Weight: 6" I.E Length; 12ft Temperature R *available in o and high temp Colour: Black	r: Poly ry, dry rs r: Poly for 20' 2 2 X I 0. = 2 ange: ther in reratur outer,	vester, cone/l y fabr ' I.D. 1. D. .11bs/ .65°F Grey	/Neop Fiberg ic ove Larger Ft to +c lation inner	orene - lass - r fully sizes 600°F ter jac	· U-Lc U-Loł enca avail ket cc	ok 100 < 401 psulate able	ed spri	ng stee	el helix

Double Wall Fitting

Designed specifically for U-Lok 900 style insulated duct.

Pressure Inch. H.g 3.2 2.7 2.4 2.2 1.8 1.6 1.25

Fitting provides for a secure connection of inner and outer jackets while sealing off the insulation layer.

Novaflex can provide many double wall insulated duct configurations to meet specific application needs.

EXTRUDED MATERIAL HANDLING HOSE

Novaflex extruded thermoplastic material handling hoses provide an economical alternative to cumbersome rubber hose.

SF-AGRI

A flexible chemical resistant thermo plastic hose featuring a smooth full wall tube for uniform temperature and chemical resistance. Chemical resistant thermoplastic rubber tube with molecularly bonded external polypropylene helix. Superior chemical resistance. Heavy wall for dry and wet fertilizers. Green external helix for safety. Smooth interior for optimum product flow.Full wall tube for uniform chemical and temperature resistance.

Applications

Agricultural fertilizers Marine Liquid waste - septic tank service Dewatering Swinming pool maintenance Water discharge Medium duty material handling **Construction**

Material: Thermoplastic rubber Diameters: 1" to 6" Weight: 3" I.D. = 1.2 lbs/ft Lengths: Diameters 1" to 4", 100 ft lengths, 6" diameter lengths of 60ft. Temperature range: -60° to +225°F Colour: Black with green wear strip

I.D.	1	1.5	2	3	4	6
Working Pressure/PSI	50	50	50	45	40	25
Negative Pressure Inch. H.g	29	29	29	29	29	28

Novaflex Mulch Hose

An economical alternative to all urethane and rubber material handling hose. Manufactured with a heavy gauge PVC wall and polyurethane liner for superior abrasion resistance. A clear wall for visual flow monitoring of material.

Applications

Wood chipping equipment Leaf collection equipment Medium duty material handling Plant debris collection

Construction

Material: PVC wall, polyurethane liner Diameters: 2.5" to 6" Bend radius: 4" I.D. = 5" Weight per/ft: 4" = 1.4lbs. 6"=2.6lbs Lengths: Diameters: 2.5" to 4" 100 ft, Diameter 6": 50ft Temperature: -20°F to +165°F Colour: Translucent with black external wearstrip *Also available in all PVC wall construction

I.D.	2.5	3	4	6
Working Pressure/PSI	40	40	35	30
Negative Pressure Inch. H.g	29	29	29	28

SF-HDAP

A robust all purpose thermoplastic rubber hose for dry and wet material handling. Heavy duty thermoplastic inner tube with fully encapsulated plastic, external wear strip. All extruded thermo plastic heavy wall hose. Designed for medium duty material handling where flexibility is paramount. Offers superior chemical and temperature resistance. *Note where static charge is a concern,

please refer to NF-Static Conductor style.

Applications

Good chemical resistance Heavy wall for industrial use Abrasion resistant for medium duty material handling Smooth interior for superior product flow A lighter weight flexible alternative to traditional rubber hoses Industrial dirt and dust control Medium duty material handling

Construction

Material: thermoplastic rubber Diameters: 2" to 8" Bend radius: 3" I.D. = 4" Weight: 3" = 1 lbs/ft Lengths: Diameters 2" to 4"100ft lengths. Diameters: 5" to 8", 50 ft lengths. Temperature range:-65° to +225°F Colour: Black with black external helix

I.D.	2	3	4	5	6	8
Working Pressure/PSI	40	35	30	30	30	30
Negative Pressure Inch. H.g	29	29	29	28	28	27

Novaflex TPU Heavy Duty Urethane Vacuum Hose

All extruded construction, light weight alternative to cumbersome rubber hose. Designed specifically for transfer of abrasive materials under vacuum.

Applications

Storage tanks barges and tankers including underwater applications in aquaculture; hatchery, pen transfer, stream release, dewatering.

Construction: Part No. 95FTPUX04V

Material: Extruded polyurethane co-polymer Diameters: 4" to 14" Weight: 6" diam.=2.5 lbs./ft Lengths: 50 ft lenghts Temperature range: -50°F to +200°F Colour: Extruded Transparent Blue TPU Rated for full vacuum *Also available in lighter weight discharge style Part No. 9SFTPUX04FH

I.D.	4	6	8	
Style: Vac Working Pressure/PSI	35	30	30	VAC
Style: Discharge Working Pressure/PSI	30	25	25	DISCH
Style: Vac Working Negative Pressure Inch H.g	29	29	29	VAC
Style: Discharge Negative Pressure Inch H.g	27	25	25	DISCH

These products are ideal for use in medium pressure applications where operator ease of handling is critical.

Static Conductor* Medium Duty Material Handling Hose

A flexible conductive hose designed to allow for safe grounding during wet and dry material transfer operations. This hose is lightweight with a smooth interior for optimum flow.

Applications

Agricultural clean up, grain, seeds etc. Wood chipping/ leaf collection Pellet and powder transfer Coal dust evacuation

Construction:

Material: TPR copolymer with rigid plastic external scuff guard Diameters: 2" to 6" Bend radius: 4" 1.D. = 4.25" Weight per/ft: 4" = 1.4lbs Lengths: 2" to 4" 100 ft, 6" - 50 ft Temperature Range: -40° to 200°F *Conductivity of hose should be tested regularly. Test with OHMS meter using conductive fittings inserted into each end of hose. Colour: Red with Black scuff guard

I.D.	2	3	4	6
Working Pressure/PSI	40	35	30	30
Negative Pressure Inch. H.g	29	29	29	28

Yellow Jack (Pumper Sanitation Hose)

All extruded heavy wall sanitation suction hose. Unique interlock construction provides for extreme flexibility and kink resistance.

Applications

Liquid transfer – sanitary and cesspool Machine and tank liquid transfer Utility suction operations

Construction

Material: Eva/Polyethylene co-polymer Diameters: 1.5", 2", 2.5", 3" and 4" Bend radius: 2" = 3.75" Weight: 2" = .6 lbs/ft Lengths: diameters: $1\frac{1}{2}$ " to 3":10ft, 20ft, 25ft, 30ft, 50ft, 60ft. 4" diameter: 10ft, 20ft, 25ft Temperature range: -40°F to +140°F Colour: Yellow and Black Available with factory installed cuffs or in bulk lengths

I.D.	1.5	2	2.5	3	4	
Working Pressure/PSI	25	25	20	20	10	
Negative Pressure Inch. H.g	29	29	29	29	29	

Chemical Resistance of Neoprene, Hypalon, Polyvinyl Chloride, Silicone, Polyamide, Teflon, Thermoplastic Rubber, Polyurethane

The following information is presented as a general guide only. The number of variables which can be present in any application make firm recommendations impossible. Adequate testing under actual service conditions is recommended to properly establish suitability.

Chart Rati	ng		Lit	tle o	r no	effe	:1 1	Λ
	Neoprene Rubber	Hypalon® Rubber	Polyvinyl Chloride	Silicone Rubber	Polyamide Nylon	Teflon	Thermoplastic Rubber	Polyurethane
A								
Acetic Acid (30%)								
Acetone								
Aluminum Chloride								
Aluminum Sulfate								
Ammonia (ANHYD)								
Ammonium Hydroxide								
Ammonium Sulfate								
Amyl Acetate								
Barium Sulfide								
Benzene								
Black Sulfate Liquor								
Boric Acid								
Bromine								
Butyl Acetate								
Butyl Alcohol								
Cadmium Plating Solution								
Calcium Chloride								
Calcium Hypochlorite								
Carbon Disulfide								
Carbon Tetrachloride								
Chloronated Solvents								
Chloroform								
Chlorine Water								
Chromic Acid								
Chromium Plating Solution								
Citric Acid A								
Copper Chloride								
Copper Sulfate								
Cotton Seed Oil								
Cyclohexane								
Creosote Oil								
Diacetone Alcohol								_
								_
Dowthern (A + E)								_
Disodium Phosphate								_
Ethyl Acetate								
Ethyl Alcohol				+				
Ethylene Dichloride								
Ethylene Glycol								
Ferric Chloride (40%)								
Ferric Sulfate								
Fluroboric Acid								
Formaldehyde (40%)								
Formaldehyde (over 100°F)								
Formic Acid								
Gasoline								
Glucose								
Glycerine								
Heptane								
Hexane								
Hydrobromic Acid (40%)								
Hydrochloric Acid (conc)								
Hydrofluoric Acid (100%)								
Hydrogen Peroxide								
Hydrogen Sulfide					_			
Hydrogen Sulfide				=				